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Describing, Comparing, and Classifying

Addition Strategies

[n this unit, students describe and classify their addition
strategies (Investigation 2) and their subtraction strategies
(Investigation 4) by focusing on the way they start to solve
a problem—their first steps. Strategies are made public in
this way so that all scudents can benefit from seeing the
different addition and subtraction methods. Studencs are
encouraged to expand their repertoire of strategies so that
they continue to become more flexible and fluent in their
computation. Comparing different solutions in the same
category also offers the opportunity to discuss how to
become more efficient in solving problems by adding or
subtracting larger “chunks” of the numbers.

Strategies are classified by the first step students take in
solving the problem. The first step generally indicates how
students are thinking about the problem. For example,
consider the following problem:

439 + 363 =

Jill starts by adding 400 + 300, and Enrique starts by
adding 439 + 300. Jill is adding by place, starting with the
largest place. Enrique is breaking the second number into
parts and adding each part to the first number.

Identifying the strategies helps students understand the
mathematics of their work. As you listen to students explain
their strategies, model language they can use to describe
their methods by reflecting back to them whar they are
doing. For example, you may say that, “I see you are
breaking both numbers apart by place, starting with the
hundreds,” or “Are you breaking 363 into parts and adding
each part to 4392” Your language can also help students
notice similarities between variations of a method: “Steve is
also breaking apart both numbers by place, bur he added
the tens first, then the hundreds, and then the ones.” Ask
students to compare their methods with those that have
been shared: “Who else broke up 363 into parts and then
added each part to 439? Ursula broke up the 363 differently

than Enrique did—she broke it into 300 + 61 + 2 because
she noticed that she could add 61 to 439 to get 500 as her
first step.”

Let students decide as a class which methods should be
grouped together on one chart and which are different.
This work is about helping students make sense of a variety
of solutions; it is not about “matching” their work to
predetermined categories. However, you may have to guide
the discussion to keep the number of categories reasonable
and useful. Variations of similar methods by different
students—such as Enrique’s and Ursula's—can go on the
same chart.

Some students combine methods. For example, students
may start by changing one of the numbers in the problem,
then solve the problem by using another method, and then
adjust for the change. For example, Lucy solved

439 + 3063 this way:

440 + 300 = 740
740 + 63 = 803
803 — 1 =802

She started by adding 1 to 439 to make it 440, added

363 in parts, and then adjusted for her initial change by
subtracting 1. In the discussions of strategies, you may want
to ask students who are not combining methods to share
their methods first so that some clear categories can be
established. Then students can decide how to classify a
method like Lucy’s. They may classify it according to its
firsc step as “changing one number to make it easier, and
then adjusting at the end;” they may make a new chart of
“mixed methods;” or they may want to label the variations
on the “changing one number” chart with the ways that
each is continued. Students and adults who are fluent with
computation often use a mixture of methods in the way
that Lucy does.
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Reasoning and Proof in Mathematics

As students develop strategies to perform calculations, they
frequently make claims about numerical relationships. Part
of the work of fourth grade involves helping students to
strengthen their ability to verbalize those claims and
consider such questions as: Does this claim hold for a//
numbers? How can we know? Finding ways to answer these
questions provides the basis for making sense of formal
proof when it is introduced years from now. Consider the
following vignette in which students in a fourth grade class
are discussing their methods for solving addition problems.

Amelia: Here is what I did for 229 + 347, I changed the
229 to 230. Then I took the 1 away from the 347. That
makes it 230 + 346. | can do that in my head, it’s 576.

Teacher: You are saying that 229 + 347 = 230 + 346?

Amelia: Yes, you can take the 1 off one number and put it
on the other. The answer is the same.

Teacher: Did anyone else do a problem this way?

Benson: I did something like that, but not exactly. I was
working on 597 + 375. I turned it into 600 + 372 by
moving 3 from the 375 to make 600. Then I know the
answer is 972.

Teacher: So 597 + 375 = 600 + 372. How is what
Benson did the same as what Amelia did and how is it
different?

Ramona: They both made one number larger and one
number smaller. Amelia used 1 and Benson used a 3.

Amelia: You will get the same answer. If you take some
number from one and put it on the other, the answer has
to stay the same.

Teacher: Amelia, you are saying something big. Are you
saying that with any addition problem, you can change
the addends by adding something to one and subtracting
that same thing from the other and still get the same
answer? s that what you mean?
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Amelia: Yes. You still have the same amount.

Teacher: Amelia has a way of thinking about this. I'd like
all of us to work on this idea. How can you explain why
this is true and how it works? You can use story contexts
or diagrams or number lines, any of the tools we use to
explain mathematics. You might want to begin by
thinking about a particular problem like 86 + 46, but
you need to show how your explanation works for a/
numbers, not just that example.

In this class, Amelia has made an assertion—mathematicians
call such an assertion a conjecture—that if you add a certain
amount to one of the addends and subtract it from the other
addend, the sum remains the same. The teacher has
challenged the class to find a way to show that this
conjecture is true.

Let us return to the Grade 4 classroom to see how the
students responded to the teacher’s challenge to justify
their conjecture.

Ramona: [ was thinking of a story. Suppose I have 86
apples in one bag and 46 apples in another bag. I can
take 4 of the apples out of the second bag and put them
in the first bag. That means 86 + 46 = 90 + 42. You

still have the same amount of apples.

Luke: I made a number line. You can see 86 + 46 is the
same as 90 + 42. With mine it is like you add a piece of
the 46 first and then add the rest of it.

Y 42
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Teacher: Ramona’s story and Luke’s number line both
show us that 86 + 46 = 90 + 42. How can we use their
work to say this works for all numbers?

Yuson: With the bags of apples, it doesn’t matter how
many are in each bag or how many you move. If you just
take some out of one bag and put them in the other, it
has to be the same amount.

Luke: It is the same with my number line. As long as
the two numbers on the top add up to the one on the
bottom, you have to land at the same place and that is
the answer—no matter where you begin.

Ramona has used a story context that represents addition to
explain how subtracting 4 from one addend and adding 4
to the other will result in the same total. Luke has drawn a
number line to illustrate the same relationship. Yuson then
explains how Ramona’s story context will work with any
addition problem with two addends. Similarly Luke
explains how his number line model can apply to other
addition problems.

Students in Grades K-5 can work productively on
developing justifications for mathematical ideas as this
class does here. But what is necessary to prove an idea in
mathematics? First we’ll examine what proving is in the
field of mathematics, then we will return to the kind of
proving students can do in fourth grade.

What Is Proof in Mathematics?

Throughout life, when people make a claim or assertion,
they are often required to justify the claim, to persuade
others that it is valid. A prosecutor who claims a person

is guilty of a crime must make an argument, based on
evidence, to convince the jury of this claim. A scientist who
asserts that the earth’s atmosphere is becoming warmer
must marshal evidence, usually in the form of data and
accepted theories and models, to justify the claim. Every
field, including the law, science, and mathematics, has its
own accepted standards and rules for how a claim must be
justified in order to persuade others.

When K-5 students are asked to give reasons why their
mathematical claims are true, they often say things like:
“It worked for all the numbers we could think of.” “ kept
on trying and it kept on working.” “We asked the 6th
graders and they said it was true.” “We asked our parents.”
These are appeals to particular instances and to authority.
In any field, there are appropriate times to turn to authority
(a teacher or a book, for example) for help with new
knowledge or with an idea that we don't yet have enough
experience to think through for ourselves. Similarly,
particular examples can be very helpful in undersranding
some phenomenon. However, neither an authoritative
statement nor a set of examples is sufficient to prove a
mathematical assertion about an infinite class (say, all
whole numbers).

In mathematics, a theorem must start with a mathematical
assertion, which has explicit hypotheses (or “givens”) and
an explicit conclusion. The proof of the theorem must show
how the conclusion follows logically from the hypotheses. A
mathematical argument is based on logic and gives a sense
of why a proposition is true. For instance, Ramona asserted
that the sum of two addends remains the same if you
subtract a certain number from one of the addends and add
the same number to the other addend. In later years,
Ramona’s statement might be expressed as (¢ + ) =

(@ + n) + (b — n). Luke’s statement mighe be expressed
asa + (b + ¢) = (a + b) + c. The proof of these claims
consists of a series of steps in which one begins with the
hypothesis— that # and & are numbers—and follows a
chain of logical deductions ending with the conclusion—
(a+b)=(@+n)+(b—norat+ b+ =(a+ b
ol

Each deduction must be justified by an accepted definition,
fact, or principle, such as the commutative or associative
property of addition. Luke’s way of chinking abour the
problem is related to the associative property of addition.
As Luke shows, the quantity 46 is equivalent to the sum

4 + 42,50 86 + 46 = 86 + (4 + 42). The associative
property of addition indicates that in an addition
expression such as 86 + (4 + 42), the addends can be
regrouped without changing the value of the sum:
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a+ (b+c)=(a+ b)+ c In this example, 86 + 46 =
86 + (4 + 42) = (86 + 4) + 42 = 90 + 42.

The model for such a notion of proof was first established
by Euclid, who codified what was known of Ancient Greek
geometry in his Elements, written about 300 B.c. In his
book, Euclid begins with the basic terms of geometry (a
point, a line) and their properties (a line is determined by
two points) and, through hundreds of propositions and
proofs, moves to beautiful and surprising theorems about
geometric figures.

What Does Proof Look Like in Fourth Grade?

One does not expect the rigor or sophistication of a formal
proof, or the use of algebraic symbolism, from young
children. Even for a mathematician, precise validation is
often developed after new mathematical ideas have been
explored and are more solidly understood. When
mathematical ideas are evolving and there is a need o
communicate the sense of why a claim is true, then
informal methods of proving are appropriate. Such
methods can include the use of visual displays, concrete
materials, or words. The test of the effectiveness of such
a justification is: Does it rely on logical thinking about
the mathematical relationships rather than on the fact
that one or a few specific examples work?

An important part of the fourth grader’s justification is
Yuson’s statement that it doesn’t matter what the numbers
are. She understands that the story context Ramona uses as
a model of addition can be used to show how subtracting
an amount from one addend and adding the same amount
to the other addend results in the same total, no matter
what the original numbers are.
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Proving by calling upon a model that represents the
operation, as these students do by having mental images
of the two addends and the act of putting them together,

is particularly appropriate in K-5 classrooms where
mathematical ideas are generally “under construction,” and
in which sense-making and diverse modes of reasoning are
valued. The fourth graders’ argument offers justification for
the claim that if you subtract an amount from one addend
and add that same amount to the other, the total remains
the same. For Ramona, the sum of the numbers # and 4 is
represented by the amount in the two bags. Moving some
amount from one bag to the other does not change the
total. Ramona’s argument not only establishes the validicy
of the claim for particular numbers, but for any whole
numbers, and easily conveys why it is true. Luke’s number
line diagram offers a slightly different version of the
argument for the statement: If you break one of the
addends into two parts and first add one and then add

the other, the total remains the same.

To support the kind of reasoning illustrated in the vignerte,
teachers should encourage students to use representations
such as cubes, story contexts, or number lines to explain
their chinking. The use of representations offers a reference
for the student who is explaining his or her reasoning, and
it also allows more classmates to follow that reasoning. If it
seems that students may be thinking only in terms of
specific numbers, teachers might ask, Will that work for
other numbers? How do you know? Will the explanation
be the same?



