Reasoning and Proof in Mathematics

As students find strategies to perform calculations, they
frequently make claims about numerical relationships.

Part of the work of fourth grade involves helping students
strengthen their ability to verbalize those claims and to
consider questions such as these: Does this claim hold for a//
numbers? How can we know? Finding ways to answer these
questions provides the basis for making sense of formal
proof when it is introduced years from now. Consider the
following vignette, in which a fourth-grade class is
discussing methods for solving multiplication problems.

Andrew: When I did 12 X 25, I cut the 12 in half and
doubled the 25 to make it 6 X 50. I cando 6 X 50 in
my head. I¢’s 300.

Teacher: Did anyone else use a strategy like Andrew’s on
any of the problems?

Lucy: [did. I was working on 14 X 15. I did the same
kind of thing. I changed it to 7 X 30 and that’s 210.

Teacher: Let’s look at this. Are you saying that 12 X 25
= 6 X 502 And that 14 X 15 = 7 X 30?

Sabrina: The product stays the same. You cut one number
in half and you double the other, so the answer is the same.

Teacher: Are you saying that this a/ways works—that
when you multiply two numbers, you can cut one
number in half and double the other number, and the
product will stay the same? Does the product stay
the same no matter what the numbers?

Sabrina: [ think so.

Teacher: Can we find a way to use diagrams or cubes to
show what is happening and why the product stays the
same? You may begin with the examples we have seen,
but you also must show how your argument will work
for all numbers.

In this class, Sabrina made an assertion—mathematicians
call such an assertion a comjecture—that the product of
two numbers remains the same if you divide one of the
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numbers by 2 and double the other number, The teacher
has challenged the class to find a way to show that this
conjecture is true—not just for the examples they have
noted, but for @// pairs of numbers. If they can find a proof,
they have what mathematicians call a theorem or proposition.

Let us return to the Grade 4 classroom to see how the
students responded to their teacher’s challenge to justify
their conjecture.

Noemi: I made a diagram to show it.
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Noemi: For Andrew’s example, the first rectangle is 12 by
25. Then he cut the 12 in half and moved the bottom
rectangle to make a rectangle that is 6 by 50. The first
rectangle has the same area as the last one because they're
both made up of the same two smaller rectangles. So like
Andrew says, 12 X 25 = 6 X 50.

Lucy: Noemi’s picture works for my example too. You
can think of the first rectangle as 14 X 15 and the last
rectangle as 7 X 30.

Noemi: It doesn’t matter what the numbers are. If you
cut one in half, you would always have a rectangle on
the bottom to move, and when you move that rectangle,
you make a rectangle thar is twice as long. It works for
all numbers.

Noemi has presented a model of multiplication to show how
she knows that 12 X 25 = 6 X 50. Lucy sees that the same
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representation can be used to show 14 X 15 = 7 X 30.
Noemi then points out that, in fact, it doesn’t matter what
the numbers are. The model applies to a7y two numbers
that are multiplied (provided that they are positive).

Note: The fact that Sabrina’s conjecture has been shown

to be true—if you double one factor and halve the other,
you maintain the same product—does not necessarily mean
that this doubling/halving strategy makes all multiplication
casier. If both numbers are odd (e.g., 17 X 13), halving

and doubling will result in one number that includes a
fractional part (e.g., 34 X 64). This is not a strategy one
would choose to solve all multiplication problems. However,
if both numbers are even, halving and doubling to create an
equivalent problem can often lead to a simpler computation.
Just as important, exploring why doubling and halving (and
tripling and thirding, etc.) work provides an opportunity to
learn more about the properties of multiplication and about
developing mathematical justification.

Students in Grades K-5 can work productively on developing
justifications for mathematical ideas, as Noemi does here.
But what is necessary to justify an idea in mathematics? First
we'll examine what “proof” is in the field of mathematics
and then return to what kind of justification students can do
in fourth grade.

What Is “Proof” in Mathematics?

Throughout life, when people make a claim or assertion,
they are often required to justify che claim, to persuade
others. A prosecutor who claims that a person is quilty
must make an argument, based on evidence, to convince
the jury of this claim. A scientist who asserts that the
earth’s atmosphere is becoming warmer must marshal
evidence, usually in the form of data and accepted theories
and models, to justify the claim. Every field, including
the law, science, and mathematics, has its own accepred
standards and rules for how a claim must be justified to
persuade others.

When students in Grades K=5 are asked to give reasons why
their mathemarical claims are true, they often say things

like this: “It worked for all the numbers we could think of.”
“T kept on trying and it kept on working.” “We asked the
sixth graders and they said it was true.” “We asked our
parents.” These are appeals to particular instances and to
authority. In any field, there are appropriate times to turn
to authority (a teacher or a book, for example) for help
with new knowledge or with an idea that we don't yet
have enough experience to think through for ourselves.
Similarly, particular examples can be very helpful in
understanding some phenomenon. However, neither an
authorirative statement nor a set of examples is sufficient
to prove a mathematical assertion about an infinite class
(say, all whole numbers).

In mathematics, a theorem must start wich a mathematical
assertion, which has explicit hypotheses (“givens”) and an
explicit conclusion. The proof of the theorem must show
how the conclusion follows logically from the hypotheses.
For instance, the fourth graders asserced that the product
of two numbers remains the same if you divide one of
the numbers by 2 and double the other number. In later
years, their theorem might be stated as: If m and # are
numbers, m X n = (%) X (# X 2). The proof of this
claim consists of a series of steps in which one begins with
the hypothesis—m and » are numbers—and follows a
chain of logical deductions ending with the conclusion—
m X n= (%)X (n X 2). Each deduction must be justified
by an accepted definition, fact, or principle, such as the
commutative or associative property of multiplication.

For example, to show that m X n = (m X 1) X (n X 2),
we can develop this set of steps:

mXn =[m XEX2]Xn
[(m X 3) X 2] X n
(m X 1) X (2 Xn)

In this series of steps, the associative property of
multiplication is applied twice. The associative property
can be written with symbolic notation as (2 X 4) X ¢ =
a X (b X ¢); regrouping the factors does not affect the
product. For example, in the series of steps above,

m X (3 X 2) can be regrouped as (m X L) X 2. It may
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help to look at how this works with one of the examples
from the classroom dialogue:

12X 25 =[12 X (: X 2)] X 25
=[(12x 1) xX2] X25
=(12 X 1) X (2 X25)=6X50

The model for such a notion of proof was first established
by Euclid, who codified what was known of ancient Greek
geometry in his Elements, written about 300 B.c. In his
book, Euclid begins with the basic terms and postulates

of geometry and, through hundreds of propositions and
proofs, moves to beautiful and surprising theorems about
geometric figures. What is remarkable is that, in each
mathematical realm, you can get so far with such simple

building blocks.

What Does Proof Look Like in Fourth Grade?

One does not expect the rigor or sophistication of a formal
proof, or the use of algebraic symbolism, from young
children. Even for a mathematician, precise validation is
often developed affer new mathematical ideas have been
explored and are solidly understood. When mathematical
ideas are evolving and there is a need to communicate
the sense of why a claim is true, then informal means of
justification are appropriate. Such a justification can
include the use of visual displays, concrete materials, or
words. The test of the effectiveness of such a justification
is this: Does it rely on logical thinking about the
mathematical relationships rather than on the fact that
one or a few specific examples work?

This informal approach to mathematical justification is
particularly appropriate in Grade K=5 classrooms, where
mathematical ideas are generally “under construction”
and where sense-making and diverse modes of reasoning
are valued. Noemi’s argument offers justification for the
claim that if you halve one factor and double the other,
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the product remains the same. The product of the numbers
m and # is represented by the area of a rectangle with
dimensions m and #. Noemi then cuts the vertical dimension
in half, making two rectangles, each having dimensions (2 )
and 7. One of these rectangles is moved and then connected
with the other to create a rectangle with dimensions () by
2 X 5. The area of this new rectangle must be the same as
the original, therefore (2) X (2 X #) = m X n. Noemi’s
argument establishes the validity of the claim not only for
particular numbers, but for any numbers, and easily conveys
why it is true.

An important part of Noemi’s justification is her statement
that it does not matter what the numbers are. She
understands that the process she describes with her model
will guarantee that the original rectangle will have the same
area as the final rectangle whose length is double that of
the original and whose width is half that of the original.

It is important to note that when students make such
claims of generality—zhis is true for all numbers—the
phrase @/l numbers refers to the numbers they are using.

In this vignette, Noemi’s reasoning about multiplication
takes place in the context of whole numbers. We might

see that Noemi'’s argument applies equally well to positive
values that include rational numbers, but Noemi and her
classmates will need to revisit this argument when the
domain of numbers they are working with expands beyond
whole numbers.

To support the kind of reasoning illustrated in the vignette,
encourage students to use cubes, number lines, and other
representations to explain their thinking. The use of
representations offers a reference for the student who is
explaining his or her reasoning, and it also allows more
classmates to follow that reasoning, If it seems that students
may be thinking only in terms of specific numbers, you
might ask such questions as these: Will that work for

other numbers? How do you know? Will the explanation
be the same?



