Teacher Note

Reasoning and Proof in Mathematics

Second-grade students often find numerical relationships

as they work with numbers and manipulatives. You should
encourage them to do so and verbalize these patterns and
discoveries. Consider such questions as these: Does this
hold for a// numbers? How can we know? Examining these
questions will provide the basis for the formal mathematical
idea of proof when it is introduced years from now.

Consider the following vignette in which students discuss a
pattern that comes up in the 7oday’s Number routine:

Teacher: Today’s Number is 38. A few days ago it was 29.
Here’s what several of you wrote when 29 was Today’s
Number and what you have done today for 38.

Teacher: What do you notice? Is there a pattern?

Anita: You take 38, and then you are adding zero. And
then you take one number less than the 38 and one
number more than the zero.

Teacher: And what happens next?

Henry: You take 37 + 1, and then you take one less than
37 and one more than one. That’s 36 + 2.

Rochelle: It’s the same thing with 29. You take one off
one number and give it to the other.

Teacher: Do all of these expressions on the right equal
382 And all of these on the left equal 29?

Henry: They are. You're just taking one from one number
and giving it to the other.

Teacher: Does it work for only 38 and 29? Or are you
saying that you can always do that?

Rochelle: You can always do it.

Teacher: Show me, with a picture or with cubes, how you
know that when you're adding any two numbers, you can
take one from one number and add it to the other and
get the same total.

The students have made an assertion—mathematicians
call such an assertion a conjecture—that the total of two
addends remains the same if you subtract 1 from one
addend and add 1 to the other. The teacher has challenged
the class to show that this conjecture is true not just for

38 and 29 but for 2// numbers.

How do second graders respond to such a question?
Consider how the students above responded to their
teacher’s challenge to justify their conjecture. Alberto
begins, using a tower of ten cubes to demonstrate his ideas.

Alberto: I started with 10 + 0.

If you move one over it’s 9 + 1.
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Move another one over, and now it’s 8 + 2.
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Rochelle: You can keep going. You take 1 from one
number and give it to the other.

Teacher: Alberto used ten cubes. What if he started with
382 Could he still subtract 1 from one number and add it
to the other?

Anita: Yes. Because you're still using the same amount,
the same number of cubes.

Henry: It doesn’t matter how many cubes you start
with. Tt will still work because you're just changing them
around. You keep taking from one number and adding it
to the other.

Tia: It has to be the same because, whatever number you
start with, you don’t put any more cubes in and you don’t
take any away.

Alberto presents a model of addition—joining

two sets of cubes—that shows how he knows that

10 +0 =9 + 1 = 8 + 2. Anita sees that the same
representation can show why 38 + 0 = 37 + 1 =36 + 2.
Henry and Tia point out that it does not matter what the
original numbers are. The model could be used to make a
similar argument for any two whole numbers. Later these
students might refer back to such visual models to show
why the same action—subtracting from one number and
adding to the other—does not produce the same results
with other operations.
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K-5 students can develop justifications for mathematical
ideas just like these Grade 2 students. But what is necessary
to prove an idea in mathematics? What does proof look like
in Grade 2?

What Is Proof in Mathematics?

Throughout life, when people make a claim or assertion,
they often need to justify the claim to others. A prosecutor
who claims that a person is guilty of a crime must make
an argument, based on evidence, to convince a jury of this
claim. A scientist who asserts that the earth’s atmosphere is
becoming warmer must marshal evidence in the form of
data, accepted theories, and models to justify the claim.
Every field, including the law, science, and mathematics,
has its own accepted standards and rules for how a claim
must be justified in order to persuade others.

When K=5 students are asked to give reasons why their
mathematical claims are true, they often say such things as
“It worked for all the numbers we could think of,” “T kept on
trying and it kept on working,” “We asked the sixth graders
and they said it was true,” or “We asked our parents.” These
are appeals to particular instances and to authority. In any
field, there are appropriate times to turn to authority (a
teacher or a book, for example) for help with new knowledge
or with an idea that we do not yet have enough experience to
think through for ourselves. Similarly, particular examples
can be very helpful in understanding some phenomena.
However, neither an authoritative statement nor a set of
examples is sufficient to prove a mathematical assertion
about an infinite class (such as all whole numbers).

In mathematics, a #heorem must start with a mathematical
assertion, which has explicit hypotheses (or “givens”) and
an explicit conclusion. The proof of the theorem must
show how the conclusion follows logically from the
hypotheses. A mathematical argument is based on logic
and gives a sense of why a proposition is true. For instance,
the second graders asserted that the sum of two addends
remains the same if you subtract 1 from one addend and
add 1 to the other addend. In later years, their theorem
may be stated as follows: If 72 and 7 are numbers, m + 7 =
(m — 1) + (n + 1). The proof consists of a series of steps



starting with the hypothesis— and 7 are numbers—

and follows a chain of logical deductions ending with the
conclusion—m + 7 = (m — 1) + (n + 1). Each deduction
must be justified by an accepted definition, fact, or
principle, such as the commutative or associative property
of addition. For more about these properties of addition
and their relationship to this theorem, see Teacher Note,
Does the Order Matter? in Stickers, Number Strings, and
Story Problems.

The model for such a notion of proof was first established
by Euclid. In about 300 B.C., he codified what was known
of ancient Greek geometry in his book, Elements. Euclid
begins with the basic terms of geometry and, through
hundreds of propositions and proofs, moves to beautiful
and surprising theorems about geometric figures. What is
remarkable is that, in each mathematical realm, you can get
so far with such simple building blocks.

What Does Proof Look Like in Second Grade?

One does not expect the rigor of a formal proof, or the use
of algebraic symbols and notation, from young students.
Even for a mathematician, precise validation is often
developed after new ideas have been explored thoroughly.
When mathematical ideas are evolving, informal proofs are
appropriate to communicate why a claim is true. These can
include visual displays, concrete materials, or words. The
test of the justification is this: Does it rely on mathematical
logic rather than on one or a few examples to work?

In the Grade 2 discussion above, an important part of
proving their idea is Henry’s statement that it does not
matter what number you start with. He understands that
the procedure Alberto demonstrated with cubes can be
used to show that the total number remains constant when
1 is taken from one addend and added to the other, no
matter what two addends you choose.

When students make such claims of generality—=#his is true
for all numbers—"“all numbers” refers to the numbers they
are using. In this vignette, the students’ argument about
addition concerns whole numbers. Although their reasoning
applies equally well if working with integers or rational
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numbers, they will need to revisit this argument, using a
different representation of number, when their domain of
numbers expands beyond whole numbers.

When proving a generalization, students create models—
for example, with cubes or diagrams—and use them to
represent the operation. Then they reason about those
models; for example, joining two sets of cubes to represent
addition. In K=5 classrooms, in which mathematical ideas
are generally “under construction,” and in which sense-
making and diverse modes of reasoning are valued, these are
appropriate methods for making mathematical arguments.

The second graders’ argument justifies the claim that if you
subtract 1 from one addend and add 1 to another addend,
the total remains the same. The sum of the numbers 7 and
m is represented by the total number of cubes in two stacks.
By moving one cube from one stack to another, Alberto
demonstrated subtracting 1 from 7 and adding 1 to .

The total number of cubes remains unchanged; therefore,
n+m=(n—1)+ (m+ 1). Alberto’s demonstration,
along with his classmates” explanations, validates the claim
not only for particular numbers but for any whole numbers,
and it easily conveys why the claim is true.

Second graders may extend this generalization to say that
if any amount is subtracted from one addend and added

to the other, the total stays the same (written algebraically,
n+m=(n—x)+ (m+ x)). Some students use this
generalization to solve addition problems, thinking, for
example, 38 + 25 = 40 + 23 = 63. They may prove that
this works as Alberto did, but instead of moving one cube,
they can move any number of cubes to prove that the total
is unchanged.

To support this kind of reasoning, teachers should
encourage students to use representations (cubes and
number lines are two good options) to explain their
thinking. This offers a reference for the student doing

the explaining, and it also allows classmates to follow that
reasoning. If students seem to be thinking only in terms of
specific numbers, you may ask these questions: Will that
work for other numbers? How do you know? Will the
explanation be the same?
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